For better use of our Catalog

〈For specifications〉

Specifications in this product catalog are subject to change without prior notice．
Detailed specifications are omitted for some of the products due to limited space．
Please inquire and ask for individual specification sheets when ordering．

〈Information〉

Our product catalog consists of two volumes．
This catalog，the first volume，carries product information on switches，trimmers，attenuators，circuit protectors，

Please see the second volume for other products such as sensors and motors．

The switches described in this catalog include
DIP switches and Operating switches．

Concerning Operating switches such as order to
be made products and standard products，there is a common annotation related to switches at last half catalog．Please refer it．
For other products，in each product catalog Θ logo or a description to point out order to be made products on each item at the catalog．
If there is no indication，it is a standard products．

Note prior to placing order

Please do not use our products under conditions or environments not described in this catalog．Even under the conditions or environments described in this catalog，if you want to use our products for applications requiring high reliability（These include，but are not limited to，nuclear power control equipment，railroad equipment，aviation equipment，vehicle equipment，combustion equipment，medical equipment，entertainment equipment，and disaster prevention equipment），be sure to contact our point of contact beforehand．
The details of warranty shall be as per the descriptions in this document and we shall not be liable for any damage on you resulting from the use of any equipment or device（including control systems） which is not in accordance with this document（hereinafter referred to as＂use in violation＂）．In the case where you resell our products，we shall not be liable for any damage on a third party resulting from use in violation by the third party，and even if we make payment to the third party in connection with such use in violation regardless of the name by which such payment may be called， we may demand the whole amount thereof from you．

〈Warranty Period〉

The warranty period is one year from the date of delivery．The warranty is only applicable to the product itself， not applic a ble to con sumable products such as batteries and etc．

〈Warranty Coverage〉

If any malfunctions should occur due to our fault，NIDEC COMPONENTS warrants any part of our product within one year from the date of delivery by repair or replacement at free of charge．However，warranty is not applicable if the causes of defect should result from the following con ditions：
－Failure or damages caused by inappropriate use，inappropriate conditions，and inappropriate handling．
－Failure or dam ages caused by inappropriate modifications，adjustment，or repair．
－Failure or damage caused by technically and Scientifically unpredictable factors．
－Failure or damage caused by natural disaster，fire or unavoid able factors．

The DIP switch is generally defined as "Dual In-line Package Switch".
Since we marketed our first Dip Rotary Code Switch S-1000 in 1978, we have been expanding the range of DIP switch series.
Mounted on the printed circuit board incorporated in information processing equipment, data communications equipment and control equipment, etc., DIP switches are mainly used as a means of setting such as for programs and circuits as well as circuit switching. Based on our special expertise in contact technology and sealing technology, we are manufacturing reliable switches that can satisfy the needs for digitalizing, upgrading and down-sizing of equipment.
Our DIP switches are classified as follows:

- DIP Slide Switch

CHS series is a half-pitched thin type SMD slide switch conforming to EIAJ SOP Configuration Standard.
Full-pitched slide switch CFS series has been newly added, moreover, 1 mm -pitched CVS series, piano switch CHP series and CFP series have also added, meeting various needs.

- DIP Rotary Code Switch

This switch is designed to rotate the rotor so that a code signal is output by making a binary connection between common terminal and each of terminals 1, 2, 4, 8, directly.
A decimal or hexadecimal step of real code and complementary code are provided as circuit configurations.
Three switch types are available according to configurations; knobbed type, top setting type and side setting type.
In addition, this switch is classified into a board insertion type and an SMD type according to the mounting method.

APPLICATIONS

SWITCHES

photovoltaic power generation

earth leakage breaker

APPLICATIONS SWITCHES

APPLICATIONS

SWITCHES

security alarm

security

rail \& in-vehicle

car navigation system

APPLICATIONS

SWITCHES

electric power tool

electric drill
disk grinder

sensor device

medical equipment (ex. ultrasonograph)
non-contact temperature meter

PACKAGING
 DIP SWITCHES

$※$ In addition to the DIP switches in this chapter，the following notes on the page 155 contain common notes applied to some of the pushbutton switches（detect switches），slide switches，and rotary switches described later．
BULK PACKAGING SPECIFICATIONS IN PLASTIC BAGS \＆BOXES

Part number	Maximum Q＇ty／pack	Small packing box		
		Maximum Q＇ty／small Packing box	$\begin{gathered} ※ 1 \\ \substack{\text { Dimensions } \\ W \times H \times D \\ (\mathrm{~mm})} \end{gathered}$	Gross weight （g）
CJS－1200A，B	100	500	$60 \times 70 \times 60$	41
CJS－1201A，B				46
CAS－120A，B	100	500	$60 \times 70 \times 60$	41
CAS－220A，B				60
CAS－D20A，B				
CVS－04B	100	500	$60 \times 70 \times 60$	50
CVS－08B				80
CVS－01B，C	100	500	$60 \times 70 \times 60$	30
CVS－02B，C				
CVS－03B，C				
CHS－01A，B	50	200	$60 \times 70 \times 60$	25
CHS－02A，B				30
CHS－04A，B				39
CHS－06A，B				49
CHS－08A，B				60
CHS－10A，B				70
CES－0202C	10	20	$60 \times 70 \times 60$	34
CES－0402C				46
CES－0602C				58
CES－0802C				70
CMS－2202A，B，C	50	100	$60 \times 70 \times 60$	47
CMS－2302A，B，C				51
CMS－2402A，B，C				57
CMS－2212A，B，C				49
CMS－2312A，B，C				55
CMS－2412A，B，C				61
CMS－2214A，B，C				49
CMS－2314A，B，C				55
CMS－2414A，B，C				61
CMS－4202A，B，C	25	50	$60 \times 70 \times 60$	47
CMS－4216A，B，C				49
CRFS－2202	25	50	$60 \times 70 \times 60$	72
CRFS－2302				96
S－4000A，B	50	200	$60 \times 70 \times 60$	39
SA－70］0A，B，C	50	200	$60 \times 70 \times 60$	83
SA－71［0A，B，C				87
SA－72П0A，B，C				83
SA－701A，B，C		100		84
SA－7101A，B，C				86
SA－72ロ1A，B，C				84
S－700EA，EB，EC	50	200	$60 \times 70 \times 60$	71
S－70］1EA，EB，EC		100		145
CS－32－12EZA，EZB	100	500	$60 \times 70 \times 60$	40
CS－32－12EZG，EZH	100	500	$60 \times 70 \times 60$	40
CS－4－12YA，YB，YC	50	500	$60 \times 70 \times 60$	65
CS－4－12XA，XB，XC				
CS－4－13NA，NB				
CS－4－14NA，NB				
CS－4－22YA，YB				
CL－SB－12L－0］	50	100	$60 \times 70 \times 60$	45
CL－SB－12L－1］				46
CL－SB－13L－0］				51
CL－SB－13L－1］				52
CL－SB－22L－0］				46
CL－SB－22L－1］				47
CL－SB－23L－0］				52
CL－SB－23L－1］				53
CL－SA－12［－T	50	100	$60 \times 70 \times 60$	39

Part number	Maximum Q＇ty／pack	Small packing box		
		Maximum Q＇ty／small Packing box	$\begin{gathered} ※ 1 \\ \begin{array}{c} \text { Dimensions } \\ W \times H \times D \\ (\mathrm{~mm}) \end{array} \end{gathered}$	Gross weight （g）
S－10［0A，S－20］0A	25	50	$60 \times 70 \times 60$	57
S－11［0A，S－21［0A				62
S－12प0A，22■0B				66
S－10ロ1A，S－20■1A				70
S－11－1A，S－21］1A				75
S－12П1A，22－1B				79
SC－10■0，SC－20■0	25	50	$60 \times 70 \times 60$	47
SC－11［0，SC－21［0				52
SC－12■0，SC－22 $\square 0$				47
SC－101，SC－20］1				53
SC－11］1，SC－21］1				58
SC－12ロ1，SC－22■1				53
SC－100B，SC－20П0B				47
SC－12■0B，SC－220ㅣ				47
SD－10ㄷ，SD－2070	25	50	$60 \times 70 \times 60$	48
SD－11［0，SD－21］0				53
SD－12 $\square 0$, SD－22 0^{0}				48
SD－101，SD－20］1				63
SD－11］1，SD－21］1				68
SD－12］1，SD－22－1				63
SD－10［0B，SD－20］0B				48
SD－12С0B，SD－22П0B				48
CHP－02ロA，02■B	50	100	$60 \times 70 \times 60$	31
CHP－04■A，04■B				41
CHP－08ロA，08ロB				58
SA－50Д0E	25	50	$60 \times 70 \times 60$	89
SA－51L0E				94
SA－50D1E		25		64
SA－51D1E				66
S－800	50	100	$60 \times 70 \times 60$	44
S－81L0				51
S－80］1				48
S－81D1				56
SS－10－15SPE，16NPE	25	50	$60 \times 70 \times 60$	57
SS－10－16SP－AE，23NPE				
SS－10－15SP－LE，16NP－LE				62
SS－10－16SP－L－AE，23NP－LE				
RS1，RG1，RD1		20	$166 \times 20 \times 78$	190
RS2，RG2	－	10		170
RS3，RG3				220

※ 1 Tolerance ：± 2

PACKAGING DIP SWITCHES

Part No．label

T y p e		
S p e c		
Quantity		
LOT No		
Date code		
MADE IN XXX		
$\square \square \square \square$［RoHS］		
NIDEC COMPONENTS		

マガジンの包装仕様 PACKAGING SPECIFICATIONS FOR MAGAZINE TYPE

Part number	Stick packaging		Magazine box	
	Q＇ty／Stick	※ 1 Dimensions $\mathbf{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{mm})$	Maximum Q＇ty／Box	(g) Gross weight
CHS－04MA，MB	70	$504 \times 3.9 \times 10.4$		17
CHS－06MA，MB	50			
CHS－08MA，MB	40			
CHS－10MA，MB	30			
CFS－010ロMA，MB，MC	118	$504 \times 11 \times 13$	4720	1440
CFS－020ロMA，MB，MC	72		2880	1440
CFS－030ロMA，MB，MC	52		2080	1400
CFS－040ロMA，MB，MC	40		1600	1400
CFS－050ロMA，MB，MC	32		1280	1400
CFS－060ロMA，MB，MC	28		1120	1440
CFS－070ロMA，MB，MC	24		960	1400
CFS－080ロMA，MB，MC	20		800	1400
CFS－090ロMA，MB，MC	18		720	1400
CFS－100ロMA，MB，MC	16		640	1360
CFP－02पMB，MC	62	$504 \times 13.5 \times 14.8$	1674	1593
CFP－03［MBB，MC	46		1242	1539
CFP－04［MBB，MC	36		972	1512
CFP－05［MB，MC	30		810	1512
CFP－06पMB，MC	26		702	1512
CFP－08［MB，MC	20		540	1512
CFP－10［MMB，MC	16		432	1512
CES－0202MC	60	$504 \times 17.2 \times 12$	1920	2496
CES－0402MC	36		1152	2496
CES－0602MC	26		832	2496
CES－0802MC	20		640	2496
CSS－121ロMC	53	$504 \times 6.6 \times 5.8$	4240	1040
CSS－131ロMC	38		3040	1120
CSS－130ロMC	38	$504 \times 9.7 \times 3.7$	3800	1600
CYP－02■MB	70	$500 \times 7.5 \times 13$	4200	1920
CYP－02■MC		$500 \times 11.5 \times 13$	2800	1520
CYP－04■MB	40	$500 \times 7.5 \times 13$	2400	1980
CYP－04ПMC		$500 \times 11.5 \times 13$	1600	1560
CYP－06［MB	28	$500 \times 7.5 \times 13$	1680	1980
CYP－06■MC		$500 \times 11.5 \times 13$	1120	1500
CYP－08［MM	20	$500 \times 7.5 \times 13$	1200	1920
CYP－08［MC		$500 \times 11.5 \times 13$	800	1520
CYP－10ПMB	16	$500 \times 7.5 \times 13$	960	1860
CYP－10円MC		$500 \times 11.5 \times 13$	640	1480
SH－700MA，MB，MC	50	$390 \times 17.2 \times 13.4$	1200	1088
CS－7－14MB			1200	1088

PACKAGING SPECIFICATIONS FOR TRAY TYPE

Part number	Q＇ty／tray	Tray box		
		Maximum Q＇ty／tray box	$\begin{gathered} ※ 1 \\ \text { Dimensions } \\ \mathbf{W} \times \mathbf{H} \times \mathrm{D} \\ (\mathrm{~mm}) \end{gathered}$	Gross weight （g）
CMS－2202WC	50	500	$305 \times 148 \times 140$	528
CMS－2302WC				553
CMS－2402WC				578
CMS－2212WC				538
CMS－2312WC				568
CMS－2412WC				598
CMS－2214WC				538
CMS－2314WC				568
CMS－2414WC				598
CMS－4202WC				728
CMS－4216WC				748
S－700EWC	50	500	$305 \times 148 \times 140$	468
S－70］1EWC				638
S－100W，S－20OW	50	500	$305 \times 148 \times 140$	763
S－1110W，S－21［0W				813
S－12■OW，S－22－0W				893
S－10］1AW，S－20－1AW				943
S－1101AW，S－21］1AW				838
S－12■1AW，S－22－1AW				968
SC－10OW，SC－200W	50	500	$305 \times 148 \times 140$	643
SC－11［0W，SC－21［0W				693
SC－12［0W，SC－22［0W				643
SC－10－1W，SC－20］1W				708
SC－11－1W，SC－21］1W				758
SC－12ロ1W，SC－22ロ1W				708
SC－10－10WB，SC－20工OWB				643
SC－12－0WB，SC－22COWB				643
CRFS－2202W	50	500	$305 \times 148 \times 140$	1028
CRFS－2302W				1278
CRFS－2204W				1078
CRFS－2304W				1328

Part number	Q＇ty／tray	Tray box		
		Maximum Q＇ty／tray box	※ 1 Dimensions $\begin{gathered} \mathbf{W} \times \mathbf{H} \times \mathrm{D} \\ (\mathrm{~mm}) \end{gathered}$	Gross weight （g）
SD－10－0W，SD－20＿0W	50	500	$305 \times 148 \times 140$	653
SD－11［0W，SD－21L0W				703
SD－12COW，SD－22－0W				653
SD－101W，SD－20Д1W				718
SD－1111W，SD－21D1W				768
SD－12－1W，SD－22ロ1W				718
SD－10－0WB，SD－2070WB				653
SD－12－0WB，SD－22IOWB				653
SA－50－LOMEW	50	500	$305 \times 148 \times 140$	1078
SA－51L0ULEW				1128
SA－50］1［IEW				1328
SA－51］1［TEW				1368
S－800．W	50	500	$305 \times 148 \times 140$	463
S－81［0W				498
S－80－1W				493
S－81］1W				528
SS－10－15SPEW，16NPEW	50	500	$305 \times 148 \times 140$	748
SS－10－16SP－AEW，23NPEW				748
SS－10－15SP－LEW，16NP－LEW				798
SS－10－16SP－L－AEW，23NP－LEW				798

※ 1 Tolerance ± 3

Part No．label

IPACKAGING SPECIFICATIONS FOR TAPING TYPE（PLASTIC REEL）

Part number	Q＇ty／reel	Reel box		
		Maximum Q＇ty／reel box	$\begin{gathered} ※ 1 \\ \text { Dimensions } \\ \mathrm{W} \times \mathrm{H} \times \mathrm{D}(\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { Gross } \\ \text { weight }(\mathrm{g}) \end{gathered}$
CJS－1200A，B（522）／2 Reel	1000	2000	$260 \times 48 \times 260$	617
CJS－1201A，B（542）／2 Reel				637
CAS－120TA，TB	1000	2000	$260 \times 48 \times 260$	617
CAS－220TA，TB				669
CAS－D20TA，TB				
CVS－01TB	2000	4000	$260 \times 48 \times 260$	708
CVS－02TB				719
CVS－03TB	1000	4000	$260 \times 48 \times 260$	809
CVS－04TB	2000	4000	$260 \times 48 \times 260$	808
CVS－08TB				1035
CVS－01TB－1	500	1000	$185 \times 46 \times 188$	224
CVS－02TB－1				237
CVS－03TB－1				251
CVS－04TB－1				264
CVS－08TB－1				334
CHS－01TA，TB	1000	2000	$260 \times 48 \times 260$	617
CHS－02TA，TB	500	1000		585
CHS－04TA，TB				633
CHS－06TA，TB				681
CHS－08TA，TB			$260 \times 63 \times 260$	843
CHS－10TA，TB				888
CHP－02	500	1000	$260 \times 48 \times 260$	647
CHP－04 \square TA，TB				735
CHP－08 TA，TB				979
CMS－2202TA，TB	900	900	$335 \times 33 \times 335$	866
CMS－2302TA，TB				911
CMS－2402TA，TB				956
CMS－2212TA，TB				932
CMS－2312TA，TB				986
CMS－2412TA，TB				1040
CMS－2214TA，TB				932
CMS－2314TA，TB				986
CMS－2414TA，TB				1040
CMS－4202TA，TB	500	500	$335 \times 41 \times 335$	905
CMS－4216TA，TB				1005
CUS－12TB	2500	2500	$335 \times 24 \times 335$	780
CUS－13TB			$335 \times 33 \times 335$	880
CUS－14TB				1010
CUS－22TB	1400	1400	$335 \times 24 \times 335$	660
CSS－1210TB	1900	1900	$335 \times 24 \times 335$	760
CSS－1310TB			$335 \times 33 \times 335$	900
S－4010TA，TB	500	500	$260 \times 24 \times 260$	331
SA－70 OTA，TB	500	500	$260 \times 24 \times 260$	519
SA－71■0TA，TB			$335 \times 24 \times 335$	610
SA－72■0TA，TB			$260 \times 24 \times 260$	519
SA－70］1TA，TB			$335 \times 24 \times 335$	785
SA－71］1TA，TB				815
SA－72■1TA，TB				785
SA－70■2TB			$335 \times 33 \times 335$	683
SA－71－2TB				695
SA－72■2TB				683
SA－70■3TB				683
SA－71［3TB				695
SA－72■3TB				683
CL－DA－1CB4－A2	1000	1000	$260 \times 24 \times 260$	490
CL－DA－1BB4－A2				500
CL－DB	1000	1000	$260 \times 24 \times 260$	454
CL－SB－12A－0 T，12B	500	500	$335 \times 33 \times 335$	648
				648
CL－SB－13A－0 T，13B				672
CL－SB－13A－1 \square T，13B				677
CL－SB－22A－0 T，22B				651
CL－SB－22A－1 \square T，22B				655
CL－SB－23A－0 T，23B				680
CL－SB－23A－1 \square T，23B				686

		Reel box		
Part number	Q＇ty／reel	Maximum Q＇ty／reel box	$\begin{gathered} ※ 1 \\ \text { Dimensions } \\ \mathbf{W} \times \mathbf{H} \times \mathrm{D}(\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { Gross } \\ \text { weight (g) } \end{gathered}$
S－70 0ETA，ETB	500	500	$260 \times 24 \times 260$	512
S－70］1ETA，ETB			$335 \times 24 \times 335$	763
SH－70 0 TA，TB	500	500	$335 \times 24 \times 335$	655
CS－32－12ZETA，ZETB	500	2000	$185 \times 74 \times 185$	420
CS－32－12ZETG，ZETH		500	$260 \times 20 \times 260$	277
CS－4－12YTA，YTB	500	2000	$185 \times 69 \times 185$	527
CS－4－12XTA，XTB				
CS－4－13NTA，NTB				
CS－4－14NTA，NTB				
CS－4－22YTA，YTB				
CS－7－14TB	500	500	$335 \times 33 \times 335$	655
SC－10■OTB，20■0TB	500	500	$333 \times 33 \times 333$	816
SC－12■0TB，22■0TB				
SD－10■0TB，20■0TB	500	500	$333 \times 33 \times 333$	826
SD－12■0TB，22■0TB				
CFS－0100TA，TB，0101TA，TB	1000	1000	$335 \times 33 \times 335$	750
CFS－0200TA，TB，0201TA，TB				810
CFS－0300TA，TB，0301TA，TB				920
CFS－0400TA，TB，0401TA，TB				990
CFS－0500TA，TB，0501TA，TB				1110
CFS－0600TA，TB，0601TA，TB				1180
CFS－0700TA，TB，0701TA，TB			$335 \times 41 \times 335$	1370
CFS－0800TA，TB，0801TA，TB				1440
CFS－0900TA，TB，0901TA，TB			$335 \times 53 \times 335$	1670
CFS－1000TA，TB，1001TA，TB				1730
CFS－0102TA，TB，0103TB	800	800	$335 \times 33 \times 335$	690
CFS－0202TA，TB，0203TB				760
CFS－0302TA，TB，0303TB				830
CFS－0402TA，TB，0403TB				910
CFS－0502TA，TB，0503TB				980
CFS－0602TA，TB，0603TB				1060
CFS－0702TA，TB，0703TB			$335 \times 41 \times 335$	1190
CFS－0802TA，TB，0803TB			$335 \times 53 \times 335$	1350
CFS－0902TA，TB，0903TB				1430
CFS－1002TA，TB，1003TB				1480
CFP－02－1TB	500	500	$335 \times 33 \times 335$	810
CFP－03ロपTB				890
CFP－04				970
CFP－05				1060
CFP－06ロपTB			$335 \times 41 \times 335$	1190
CFP－08ロロTB			$335 \times 53 \times 335$	1440
CFP－10～पTB				1677
CYP－0200B，0201B，0202B	700	700	$335 \times 33 \times 335$	644
CYP－0210B，0211B，0212B				
CYP－0400B，0401B，0402B				800
CYP－0410B，0411B，0412B				
CYP－0600B，0601B，0602B				980
CYP－0610B，0611B，0612B				
CYP－0800B，0801B，0802B			$335 \times 41 \times 335$	1124
CYP－0810B，0811B，0812B				
CYP－1000B，1001B，1002B			$335 \times 53 \times 335$	1280
CYP－1010B，1011B，1012B				

Notes）Reel material ：Plastic（Polystrene）
※ 1 Tolerance ± 5
CS－32（G•H），CJS，CAS，CVS，CHS，CHP， CFS，CFP，CMS，S－4000，SA－7000，S－7000，
CS－4，CS－32（A•B），
CVS－XX－1 reel box SC－1000／2000，SD－1000／2000， SH－7000，CS－7，CL－DA，CL－DB，CL－SB reel box

MARKING
 DIP SWITCHES

1. Production date code (No. 1)

Production date code is exhibited on each product as shown in below.

Production date code

year	code	Month	code
1999	9	1	A
2000	0	2	B
2001	1	3	C
2002	2	4	D
2003	3	5	E
2004	4	6	F
2005	5	7	G
2006	6	8	H
2007	7	9	J
2008	8	10	Y
2009	9	11	L
2010	0	12	M
\ldots	\cdots	-	-

Date code, in principle, consists of one digit and one capital letter. Per above table the last digit of year represents, a year while a capital letter a month.

Note

- Date code marking position is per outline drawing of each model.
- Marking of Part No. is made for the following models.

S-1000A/2000A	RD	
SA-5000	SS-10 (Rotary switches)	
S-8000	RS/RG (Rotary switches)	

Example
Manufactured in Sep. of 2008.

Models of date code application

DIP switches	Slide switches
CVS	CJS
CHS	CAS
CHP	CL-SA
CFS	CL-SB
CES	CRFS
CFP	CMS
CYP	CUS
RD	CSS
S-1000A/2000A	Rotary switches
SC-1000/2000	CS-4
SD-1000/2000	CS-7
S-4000	SS-10
SA-5000	RS/RG
SA-7000	Pushbutton (Detect) switches
S-7000	CL-DA
SH-7000	CL-DB
S-8000	

MARKING DIP SWITCHES

1. Production date code (No. 2)

Production date code is exhibited on each product as shown in below.

The model that this marking method is applicable: Rotary switch CS-32

Production date code

	Year			
Stamping position	Upper right			Upper right
Month	$\begin{aligned} & 1999 \\ & 2003 \\ & 2007 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2004 \\ & 2008 \end{aligned}$	$\begin{aligned} & 2001 \\ & 2005 \\ & 2009 \end{aligned}$	$\begin{aligned} & 2002 \\ & 2006 \\ & 2010 \end{aligned}$
1	A	N	A	N
2	B	P	B	P
3	C	Q	C	Q
4	D	R	D	R
5	E	S	E	S
6	F	T	F	T
7	G	U	G	U
8	H	V	H	V
9	J	W	J	W
10	K	X	K	X
11	L	Y	L	Y
12	M	Z	M	Z

In principle, capitals per the table are used, commencing with January of 2001 as A in order. The same arrangement will be repeated after 48 months or 4 years.

2. Coating and potting

If the switch is coated or potted, the movable parts may lock, making readjustment difficult.
Further, if coating or potting is made, make sure that the hardening temperature does not exceed $70^{\circ} \mathrm{C}$.
In actual coating and potting, please make sure before use that the using conditions differ respectively.
Please note that the CVS, CHS CHP, CFP, CYP, CES \& Slide switches CJS, CAS, CL-SA, CL-SB, CRFS, CMS, CUS, CSS are not of sealed construction and therefore cannot be coated or potted.For details, please refer to page 152.

HANDLING NOTES DIP SWITCHES

1. Caution for storage

When storage of the products, it must consider terminal soldering-ability, packaging function with temperature and humidity may effect the product. Especially, be caution on the below items.

1) Under High temperature and High humidity, the package will accelerate aging variation. It is recommended to store the product under room temperature $25^{\circ} \mathrm{C}$ with relative humidity 75%.
2) To avoid store under sulfidizing gas/corrosive gas environment.
3) Handle with care to avoid the terminal change of shape.
4) To avoid direct daylight and dust.
5) Only open the standard package at the last minute before use.
6) When storing the switches, please take precautions such as putting them in vinyl bags to avoid terminal discoloration. And do not store the switches at high temperature, high humidity,
or where harmful gas exists.
For products manufactured 3 to 6 months before, depending on their storage location, reinspection is recommended before use.
7) When terminal discoloration is found, clean the discolored areas before use.

2. Using Environment

Be caution, it is not suitable for the below conditions.

- Sulfidizing gas, corrosive gas, reducing gas of atmosphere
- Rapid cooling of solvents
- Long time dipping into solvents (specially at high temperature)
- High humid environment

3. Soldering condition

Generally, it is possible to use soldering construction method.
However, if use flow soldering,it does require to consider carefully condition of wave soldering.
(The amount of flax applied to the switches has to be minimized. After apply flux,it must carry out pre-heat process.)
It may not suitable for condition of high package density or equipment.

Infrared reflow soldering < SMD type in common >
For lead free soldering, it is recommended as indicate on the below temperature profile drawing. However, concerning infrared heater style, It depends on physical object's color and material. The infrared absorb fraction varied, heating degree will be changed. If the temperature of product is more than $260^{\circ} \mathrm{C}$, it will change the shape of product. Be caution, do not excess temperature $260^{\circ} \mathrm{C}$ on the surface of the product.

- Infrared reflow soldering

HANDLING NOTES DIP SWITCHES

- Flow soldering
<Through hole type in common>
Use Rosin series flux with non-corrosive
When apply flux, make sure do not overflow on PCB

After apply flux, it must carry out pre-heat.
Make sure the product does not touch soldering.
If the product touch soldering, the product shape will be changed. It causes production function degradation.
The temperature of soldering bath should be at $245 \sim 260^{\circ} \mathrm{C}$.
The dipping time is $3 \sim 5$ second per operation. The total dipping time must not exceed 10 seconds.
For flow soldering, it is recommended as indicate on the below temperature profile drawing.

- Flow soldering

$\mathrm{Tp} \leqq 260^{\circ} \mathrm{C}$ (Peak temperature)
Recommended profile for Lead-free soldering
<S-7000, SH-7000, DRS/DRR, S-1000A/2000A,
SC-1000/2000, SA-5000, S-8000, RD, Rotary switches SS-10/S-2050, RS/RG in common >
(C type of S-7000, SH-7000, SC-1000/2000)
The amount of flux applied to the switches has to be minimized.
The contact section will be sealed by O ring. Although the flux does not get inside the switch. If the flux remain between up rotor and cover, The torque may be heavy. Due to this, it must minimally apply flux. After the soldering, please wash off after soldering.
< SA-7000, SD-1000/2000 (C type) in common >
Due to non seal structure, please apply flux on terminal section only. After soldering, do not wash off.
<CVS-01C and CFS, CFP, CYP, CES, Slide switches CL-SB, CRFS, CMS (C type) in common>
Due to open structure, please apply flux on terminal section only. After soldering, do not wash off. (CFS, CYP are washable type, it can be washed.)
- Manual soldering (Through hole type)

For soldering by soldering gun, it is recommended to use a small soldering gun under $380^{\circ} \mathrm{C}$ within 3 seconds. The soldering gun tip must not touch to the housing resin, but only to the terminal.

[^0]4. Cleaning
< CHS(All of these items,washable type only with seal tape), S-7000, S-1000A/2000A, SA-5000, S-8000, Slide switches CJS, CAS, Rotary switches CS-32, CS-4, SS-10/S-2050 in common >
It can be cleaned in general. Be caution on the following points.

- After the soldering, make sure the product temperature well cool off below room temperature $30^{\circ} \mathrm{C}$, then proceed for clearing. If we dip the product with hot temperature into cleaning liquid, the inner section of the product will be shrinking. The absorption phenomenon will be incurred. The cleaning liquid will go into inner section. Moreover, the products can not apply for special cleaning such as vacuum (decompression) cleaning. Do not use special clearing.
- The washable of wash liquid stated as below, it depends on the wash liquid. It may affect the product material and outlook. Be caution. CLEANTHROUGH 750HS [Kao Corporation]
Pine Alpha ST-100S [ARAKAWA CHEMICAL INDUSTRIES LTD.]
AK225AES [ASAHI GLASS COMPANY]
Water cleaning
Alcohol
※ It is not suitable for hydrocarbon series clear liquid.
※ Flon and trichloroethane are ozone-depleting substance.
From protect earth environment point view, please do not use them.
< S-4000, SA-7000, SD-1000/2000 in common >
- Due to non sealed structure, it can not be washed. Be caution.
< CVS, CHP, CFP, CES, Slide switches CL-SA,CL-SB,CRFS,CMS,CUS,CSS , Detect switchs CL-DA,CL-DB in common > - Due to open structure, it can not be washed. Be caution.
< CFS, CYP(Washable type), CS-7, SH-7000, DRS/DRR, SMR/SMRR, SC-1000/2000, Rotary switches CS-7 in common >
- Water cleaning

Alcohol

HANDLING NOTES DIP SWITCHES

<RD, Rotary switches RS/RG in common >

- Regarding bolt of clean liquid, it must control of the flux density under(volume) 5%. If the flux blot density above 5%, the torque will be big. It will destroy click structure in the worse case.

5. Clean method

The method of apply cleaning stated as below.
Please minimized cleaning time.
Cleaning method

Method	Applicability	Time	\circ : Possible $\times:$ Not possible
Dipping			Note
Ultrasonic			-
		Approx. 2 min	
Vapor			
Showering			
Brushing	\times		

※ Series of CYP(washable type), CS-7, SH-7000 and SC-1000/2000 are applicable only dipping

After the cleaning, make sure it well dry. If it is not well dry, the varied of torque may incur electrical damage.
For CHS, CFS, CYP and Slide switches CJS, CAS, it is washable type.
when cleaning, do not peeling off the seal tape on the surface.
For vacuum (decompression) cleaning, be caution do not mix 2 different liquids.

- After cleaning, when peel off washable sealing tape, it might have some glue left over.

6. Combination of cleaning methods

The cleaning combination examples stated as below.
In this case, the cleaning time should be approximately
1 minute respectively.

1) Dipping (1 min) + Vapor (1 min)
2) Ultrasonic (1 min) + Dipping (1 min)
3) Showering (1 min) + Vapor (1 min)
※ Be caution of the condition can be changed. Please check before actual cleaning.

7. Screwdriver to use

Be sure to use a small screwdriver with the correct size bit. If the handle is too large or the bit is too small, the switch end stops or setting slot may be damaged.

The driver bit size for a setup (reference value)

Sereis	Tip thickness	Tip width
CS-32(Rotary switches)	$0.2 \sim 0.4$	$1.5 \sim 1.7$
CS-4(Rotary switches)	$0.4 \sim 0.5$	1.8 ~ 2.0
S-4000		
SA-7000	$0.5 \sim 0.6$	$2.0 \sim 2.4$
S-7000		
SH-7000	$0.5 \sim 0.6$	2.0 ~ 2.2
CS-7(Rotary switches)		
SS-10/S-2050(Rotary switches)	$0.5 \sim 0.6$	$2.0 \sim 2.5$
S-1000A/2000A		
SC-1000/2000		
SD-1000/2000		
SA-5000		
S-8000		
RS/RG(Rotary switches), RD	$0.5 \sim 0.6$	$2.4 \sim 3.0$

< CVS, CHS, CHP, CFS, CFP, CYP , Slide switches CJS,CAS in common >
Be sure to use an dege of tweezers with tip width of about 0.8 mm to set up the switch.
8. Be caution of setting
<S-1000A/2000A, SC-1000/2000, SD-1000/2000, SA-5000, S-8000, Rotary switches SS-10/SA-2050 in common >
When set up the switch, rotate the shaft, it does feel clicking.
The switch does not have a stop structure in mid flow.
To avoid over click and stop in mid flow.
Moreover, for code switch case, code ambiguity may occur during transition from one code position to another. (Except SS-10 series)

HANDLING NOTES DIP SWITCHES

< Pushbutton (Detect) switches CL-DA, CL-DB in common >

- When operate the switch, do not apply force over than rated load sufficiently.
- Be caution to use On (begin) position with sufficient allowance from travel distance.

For NC: ON \rightarrow (OFF) type, make sure knob must return to the free position of operation setting

- The switch-restoring force cannot be used as the mechanism driving force of any set.
- The switch body and the knob of termination cannot be used as the operating body termination
- Make sure the operating body move in a direction where the knob moves, and the operating body is applied a force to the knob vertically. (See drawing below)

9. Strength of terminals

Do not bend or twist the terminals, as this will weaken or break the terminals.

10. Automatic mounting (SMD type in common)

The switches are compatible with automatic mounting
machines. However, confirm the type of mounting machine before use, since some machines are not applicable.

11. Coating (potting)

< S-7000, S-1000A/2000A, SA-5000, S-8000, RD, Rotary
switches CS-32, CS-4, SS-10/SA-2050, RS/RG in common >
If the switch is coated or potted, the movable parts may lock, making readjustment difficult.
Further more, if coating or potting is made, make sure that the hardening temperature does not exceed $70^{\circ} \mathrm{C}$.
Do not use coating and potting material containing the following substance.
Methylene chloride

- Thinner
Acetone Xylene
<S-4000, SA-7000, SH-7000, SD-1000/2000, Slide Switchs CAS, CVS, CHS, CHP, CFS, CFP, CYP, CJS, CL-SA, CL-SB, CRFS, CMS, CUS, CSS, Detect switchs CL-DA, CL-DB, Rotary switchs SC-1000/2000, CS-7 in common > Due to open structure, be caution do not coating or potting.

GLOSSARY DIP SWITCHES

Stopper strength $\mathrm{mN} \cdot \mathrm{m}$
This shows the mechanical strength of the stops employed to limit the rotation of the rotor. A designated torque is applied to the switch axis, etc., and the strength is measured.

- Rotational torque $\mathrm{mN} \cdot \mathrm{m}$

This shows the operating force required to turn the rotor of a rotary type switch.

Switching timing

Timing is either shorting or non-shorting.
Shorting: In this case, when switching contacts on the same circuit, the second connection is made before the previously connected terminal is electrically disconnected, after which the circuit completely switches over to the correct position.
Non-shorting: This case differs from shorting in that during the switch over, (2) is completely electrically disconnected from (1) and (3), after which (2) and (3) are connected at the new connection location.

Click (detent)
The method whereby the set position is checked in a sensory manner.

Shear (Adhesion)

This test is to evaluate if any damages like electrode stripping, breaks, or cracks occur on SMD component soldered to the printed circuit board due to stress from the flank.

Pressure: 5 N
Holding time: 10 s
SMD sample

GLOSSARY
 DIP SWITCHES

- Contact
(1) A contact occurs when two insulated conductors touch each other.
(2) A contact is the small touching area between two conductors. In a switch, this is the conductive metal connection that controls the opening and closing of the electric circuit.

Operating force N
This is the maximum force when sliding a knob.

- Contact resistance [m Ω]

This is the electrical resistance that occurs between contact points when a switch is closed.
Insulation resistance [M Ω]
The insulation resistance value given by taking measurements at a given voltage between two terminals or between a terminal and ground.

Substrate bending
This test is to evaluate durability against stress due to distortion on the printed circuit at time or after SMD is mounted.

Dielectric strength [V]
This shows the specified voltage that can be applied between two terminals or between a terminal and ground without causing a short.

- Terminal strength N

This shows the strength of the tip of the terminal to withstand a static load for a fixed period of time without breaking.

Rating [VA]
This shows the maximum voltage and current capacity of a switch. Use in excess of the rated capacity will result in failure.

This is to evaluate heat resistance in soldering SMD component.

Solderability
This is a wetting evaluation test to find out how much new solder covers the terminals when immersed in the soldering bath, and to confirm the proper fillet formation in soldering process.

Pull-off strength

This test is to evaluate adherence strength of SMD component soldered to the printed circuit board against peel off strength.

Low voltage \& current rating
This is operatable margin in the load range of low voltage \& low current.

Binary coded decimal notation (BCD)
This is a numbering system where each digit of a base 10 (decimal) number is expressed in binary notation.

- BCH

Binary Coded Hexa-decimal. Each row in hexa decimal is represented by binary coded system.

- BCO

Binary Coded Octal. Each row in octal is represented by binary coded system.

SCSI
This is a micro computer control system and abbreviated from Small Computer System Interface, which controls 8 units.

Hexadecimal
This is a number system that uses 16 as a base. $A \sim F$ are used to express the base 10 numbers from $10 \sim 15$.

[^0]: - Soldering iron

 3 s maximum at $350^{\circ} \mathrm{C}$

